我精选了六个数据科学硕士项目,从Top10到Top50不同冲刺档次的院校,供在进行数据科学专业选校的同学参考。![]()
1、Columbia University
哥伦比亚大学
项目名称:Master of Science in Data Science
该项目是一个跨院系的交叉项目,由哥伦比亚大学研究生学院( Grauate School of Arts ),统计学系( Sciences’ Department of Statistics), 富的基金会工程与应用科学学院(Fu Founation School of Engineering an Applie Science),应用科学计算机科学系( Applie Science’s Department of Computer Science )以及工业工程与运筹学系(Department of Inustrial Engineering an Operations Research)共同开设,是集中了各个专业资源的顶级数据科学硕士项目。
哥伦比亚大学作为最早开设数据科学硕士项目的高校,该项目历史悠久且底蕴深厚,属于美国数据科学硕士申请难度的第一梯队。该项目为期一年半,共需修读30个学分,无需撰写毕业论文,属于就业导向型项目。
核心课程主要分为两个部分,分别是计算机科学(CS)和统计,其中CS方面授课的主要内容是算法还有并行计算系统,而统计的部分主要学习的是机器学习和统计推断的内容。该项目在选修课方面十分自由,学生只要得到了学术指导老师的批准可以选修任何其他专业的课程。
哥伦比亚大学的数据科学项目要求申请者拥有一定的数学及编程基础,最好学过微积分、线性代数、计算机编程等课程,没有强制性的工作经验要求。学生有机会在研究生阶段进行原始研究,项目包含一个顶点项目,在其中与校方的行业合作伙伴和教师互动。
2、Univeristy of Pennsylvanis
宾夕法尼亚大学
项目名称:MSE in Data Science
数据科学硕士(Master of Science in Engineering in Data Science )项目简称为DATS,开设于宾夕法尼亚大学工程学院下。和哥大、纽大的数据科学同属于美国数据科学硕士申请难度的第一梯队。
项目时长为1年半到2年,平均一届在30-40人左右,中国学生大约占比1/3至1/2,DATS项目要求学生上满10节课,其中至少5节选修课程,选课灵活度很大,学生可根据自己的兴趣和对未来职业的规划安排课程。
项目的一大亮点是,学生可以在第二年选择等同于两门课的论文或实习课(Thesis/Practicum)。如果研究项目偏理论,将被定义为论文(thesis),如果偏实际应用,将被定义为实习课(practicum),学生可选择自己的项目导师,并在学期结束展示自己的研究结果,这对于在入学时不确定自己未来的发展方向的同学非常友好,你可以随着学期的推进决定未来是走研究方向还是就业。
宾大还有不少提供给数据科学专业学生的资源,如宾夕法尼亚大学数据科学小组(Penn Data Science Group)会定期开设各种编程语言的课程,并且每学期都有3-4个与校外公司合作的项目让学生组队参与,同时也有参加各类Kaggle竞赛的队伍。除此之外,沃顿商学院的Wharton Research Data Services(WRDS)会定期招募数据科学专业的学生做兼职工作,学生在学习之余有机会参与到研究项目中。
同时每年两次的工程学院招聘会,会来各大科技公司和金融公司,而宾大是众多金融和科技公司的Target School(目标学校),公司会来学校举办招聘讲座,学生有机会和资深业内人士进行面对面交流(Networking)。
如果您想了解详细信息,请在线联系我们。