美国计算机视觉专业介绍
首页 > 顾问主页 > 美国计算机视觉专业介绍

美国计算机视觉专业介绍

2023-01-13...

阅读:108 收藏:0 评论:0 点赞:0

3秒免费留学费用评估

提前算一算,出国留学要花多少钱?

获取验证码

开始计算

为您介绍美国计算机视觉专业 和院校推荐

计算机视觉?

计算机视觉是人工智能 (AI) 的一个领域,是指让计算机和系统能够从图像、视频和其他视觉输入中获取有意义的信息,并根据该信息采取行动或提供建议。 如果说人工智能赋予计算机思考的能力,那么计算机视觉就是赋予发现、观察和理解的能力。

计算机视觉的工作原理与人类视觉类似,只不过人类起步更早。 人类视觉系统的优势是终身可以在适当的环境下训练分辨物体、物体距离、物体动静与否以及图像是否存在问题等能力。

计算机视觉训练机器来执行这些功能,但它们依靠摄像头、数据和算法在更短的时间内完成工作,而不像人类是依靠视网膜、视神经和视皮质。 经过训练用于检验产品或监控生产资产的系统每分钟能够分析数千个产品或流程,并且会发现极其细微的缺陷或问题,因此计算机视觉的能力迅速超越人类。

计算机视觉广泛用于许多行业,例如能源、公用事业、制造和汽车行业等等,并且市场仍在不断拓展。 预计到 2022 年,市值将达到 486 亿美元。


计算机视觉的工作原理

计算机视觉需要大量数据。 它一遍又一遍地运行数据分析,直到能够辨别差异并最终识别图像为止。 例如,要训练一台计算机识别汽车轮胎,需要为其输入大量的轮胎图像和轮胎相关数据,供其学习轮胎差异和识别轮胎,尤其是没有缺陷的轮胎。

这个过程会用到两种关键技术:一种是机器学习,叫做 深度学习,另一种是卷积神经网络 (CNN)。

机器学习使用算法模型,让计算机能够自行了解视觉数据的上下文。 如果通过模型馈入足够多的数据,计算机就能"查看"数据并通过自学掌握分辨图像的能力。 算法赋予机器自学的能力,而无需人类编程来使计算机能够识别图像。

CNN 将图像分解为像素,并为像素指定标记或标签,从而使机器学习或深度学习模型能够“看”到物体。 它使用标签来执行卷积运算(用两个函数产生第三个函数的数学运算)并预测它"看到"的东西。 该神经网络运行卷积运算,并通过一系列迭代检验预测准确度,直到预测开始接近事实。 然后它以类似于人类的方式识别或查看图像。

就像人类辨别远距离的图像一样,CNN 首先辨别硬边缘和简单的形状,然后一边运行预测迭代,一边填充信息。 CNN 用于理解单个图像。 循环神经网络 (RNN) 以类似的方式在视频应用程序中帮助计算机理解一连串帧中的图片关系。


更多美国计算机硕士申请,欢迎联系我进行咨询。

个人介绍:


※ 美国部咨询经理,US NEWS Global Education官方认证咨询顾问、获得加州大学洛杉矶UCLA颁发的国际教育咨询证书。
※ 英语专业八级,从业10余年时间,主做美国高端硕博和本科的申请,帮助众多学生获得美国名校录取,斩获超百万奖学金。多次代表公司赴美国考察学校。
※ 获得金吉列全国咨询顾问榜样奖、公司优秀咨询之星奖、金吉列客户服务口碑第一、公司优秀培训讲师等荣誉。   

如果此文章对您有所帮助,是对我们最大的鼓励。对此文章以及任何留学相关问题有什么疑问可以点击下侧咨询栏询问专业的留学顾问,愿金吉列留学成为您首选咨询服务机构。
分享到
去主页浏览TA的更多精彩内容 >>
上一篇文章: 美国博士怎么申请
下一篇文章: CollegeBoard官方建议AP如何选择
相关推荐
免费领取留学手册
获取验证码
我已阅读并同意《隐私保护协议》
申请领取
温馨提示
我已阅读并同意《隐私保护协议》
确定
温馨提示
确定